• Docs >
  • Module code >
  • mmedit.models.backbones.encoder_decoders.decoders.deepfill_decoder

Source code for mmedit.models.backbones.encoder_decoders.decoders.deepfill_decoder

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_activation_layer

from mmedit.models.common import SimpleGatedConvModule
from mmedit.models.registry import COMPONENTS

[docs]@COMPONENTS.register_module() class DeepFillDecoder(nn.Module): """Decoder used in DeepFill model. This implementation follows: Generative Image Inpainting with Contextual Attention Args: in_channels (int): The number of input channels. conv_type (str): The type of conv module. In DeepFillv1 model, the `conv_type` should be 'conv'. In DeepFillv2 model, the `conv_type` should be 'gated_conv'. norm_cfg (dict): Config dict to build norm layer. Default: None. act_cfg (dict): Config dict for activation layer, "elu" by default. out_act_cfg (dict): Config dict for output activation layer. Here, we provide commonly used `clamp` or `clip` operation. channel_factor (float): The scale factor for channel size. Default: 1. kwargs (keyword arguments). """ _conv_type = dict(conv=ConvModule, gated_conv=SimpleGatedConvModule) def __init__(self, in_channels, conv_type='conv', norm_cfg=None, act_cfg=dict(type='ELU'), out_act_cfg=dict(type='clip', min=-1., max=1.), channel_factor=1., **kwargs): super().__init__() self.with_out_activation = out_act_cfg is not None conv_module = self._conv_type[conv_type] channel_list = [128, 128, 64, 64, 32, 16, 3] channel_list = [int(x * channel_factor) for x in channel_list] # dirty code for assign output channel with 3 channel_list[-1] = 3 for i in range(7): kwargs_ = copy.deepcopy(kwargs) if i == 6: act_cfg = None if conv_type == 'gated_conv': kwargs_['feat_act_cfg'] = None self.add_module( f'dec{i + 1}', conv_module( in_channels, channel_list[i], kernel_size=3, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **kwargs_)) in_channels = channel_list[i] if self.with_out_activation: act_type = out_act_cfg['type'] if act_type == 'clip': act_cfg_ = copy.deepcopy(out_act_cfg) act_cfg_.pop('type') self.out_act = partial(torch.clamp, **act_cfg_) else: self.out_act = build_activation_layer(out_act_cfg)
[docs] def forward(self, input_dict): """Forward Function. Args: input_dict (dict | torch.Tensor): Input dict with middle features or torch.Tensor. Returns: torch.Tensor: Output tensor with shape of (n, c, h, w). """ if isinstance(input_dict, dict): x = input_dict['out'] else: x = input_dict for i in range(7): x = getattr(self, f'dec{i + 1}')(x) if i in (1, 3): x = F.interpolate(x, scale_factor=2) if self.with_out_activation: x = self.out_act(x) return x
Read the Docs v: v0.12.0
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.