Shortcuts

Source code for mmedit.models.components.refiners.plain_refiner

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn.utils.weight_init import xavier_init

from mmedit.models.registry import COMPONENTS


[docs]@COMPONENTS.register_module() class PlainRefiner(nn.Module): """Simple refiner from Deep Image Matting. Args: conv_channels (int): Number of channels produced by the three main convolutional layer. loss_refine (dict): Config of the loss of the refiner. Default: None. pretrained (str): Name of pretrained model. Default: None. """ def __init__(self, conv_channels=64, pretrained=None): super().__init__() assert pretrained is None, 'pretrained not supported yet' self.refine_conv1 = nn.Conv2d( 4, conv_channels, kernel_size=3, padding=1) self.refine_conv2 = nn.Conv2d( conv_channels, conv_channels, kernel_size=3, padding=1) self.refine_conv3 = nn.Conv2d( conv_channels, conv_channels, kernel_size=3, padding=1) self.refine_pred = nn.Conv2d( conv_channels, 1, kernel_size=3, padding=1) self.relu = nn.ReLU(inplace=True) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): xavier_init(m)
[docs] def forward(self, x, raw_alpha): """Forward function. Args: x (Tensor): The input feature map of refiner. raw_alpha (Tensor): The raw predicted alpha matte. Returns: Tensor: The refined alpha matte. """ out = self.relu(self.refine_conv1(x)) out = self.relu(self.refine_conv2(out)) out = self.relu(self.refine_conv3(out)) raw_refine = self.refine_pred(out) pred_refine = torch.sigmoid(raw_alpha + raw_refine) return pred_refine
Read the Docs v: v0.12.0
Versions
latest
stable
v0.12.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.