Shortcuts

Source code for mmedit.datasets.pipelines.compose

# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence

from mmcv.utils import build_from_cfg

from ..registry import PIPELINES


[docs]@PIPELINES.register_module() class Compose: """Compose a data pipeline with a sequence of transforms. Args: transforms (list[dict | callable]): Either config dicts of transforms or transform objects. """ def __init__(self, transforms): assert isinstance(transforms, Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError(f'transform must be callable or a dict, ' f'but got {type(transform)}') def __call__(self, data): """Call function. Args: data (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += f' {t}' format_string += '\n)' return format_string
Read the Docs v: v0.13.0
Versions
latest
stable
v0.13.0
v0.12.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.