Shortcuts

Source code for mmedit.models.backbones.sr_backbones.tof

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.runner import load_checkpoint

from mmedit.models.common import flow_warp
from mmedit.models.registry import BACKBONES
from mmedit.utils import get_root_logger


class BasicModule(nn.Module):
    """Basic module of SPyNet.

    Note that unlike the common spynet architecture, the basic module
    here contains batch normalization.
    """

    def __init__(self):
        super().__init__()

        self.basic_module = nn.Sequential(
            ConvModule(
                in_channels=8,
                out_channels=32,
                kernel_size=7,
                stride=1,
                padding=3,
                norm_cfg=dict(type='BN'),
                act_cfg=dict(type='ReLU')),
            ConvModule(
                in_channels=32,
                out_channels=64,
                kernel_size=7,
                stride=1,
                padding=3,
                norm_cfg=dict(type='BN'),
                act_cfg=dict(type='ReLU')),
            ConvModule(
                in_channels=64,
                out_channels=32,
                kernel_size=7,
                stride=1,
                padding=3,
                norm_cfg=dict(type='BN'),
                act_cfg=dict(type='ReLU')),
            ConvModule(
                in_channels=32,
                out_channels=16,
                kernel_size=7,
                stride=1,
                padding=3,
                norm_cfg=dict(type='BN'),
                act_cfg=dict(type='ReLU')),
            ConvModule(
                in_channels=16,
                out_channels=2,
                kernel_size=7,
                stride=1,
                padding=3,
                norm_cfg=None,
                act_cfg=None))

    def forward(self, tensor_input):
        """
        Args:
            tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
                8 channels contain:
                [reference image (3), neighbor image (3), initial flow (2)].

        Returns:
            Tensor: Estimated flow with shape (b, 2, h, w)
        """
        return self.basic_module(tensor_input)


class SPyNet(nn.Module):
    """SPyNet architecture.

    Note that this implementation is specifically for TOFlow. It differs from
    the common SPyNet in the following aspects:
        1. The basic modules here contain BatchNorm.
        2. Normalization and denormalization are not done here, as
            they are done in TOFlow.
    Paper:
        Optical Flow Estimation using a Spatial Pyramid Network
    Code reference:
        https://github.com/Coldog2333/pytoflow
    """

    def __init__(self):
        super().__init__()

        self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)])

    def forward(self, ref, supp):
        """
        Args:
            ref (Tensor): Reference image with shape of (b, 3, h, w).
            supp: The supporting image to be warped: (b, 3, h, w).

        Returns:
            Tensor: Estimated optical flow: (b, 2, h, w).
        """
        num_batches, _, h, w = ref.size()
        ref = [ref]
        supp = [supp]

        # generate downsampled frames
        for _ in range(3):
            ref.insert(
                0,
                F.avg_pool2d(
                    input=ref[0],
                    kernel_size=2,
                    stride=2,
                    count_include_pad=False))
            supp.insert(
                0,
                F.avg_pool2d(
                    input=supp[0],
                    kernel_size=2,
                    stride=2,
                    count_include_pad=False))

        # flow computation
        flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16)
        for i in range(4):
            flow_up = F.interpolate(
                input=flow,
                scale_factor=2,
                mode='bilinear',
                align_corners=True) * 2.0
            flow = flow_up + self.basic_module[i](
                torch.cat([
                    ref[i],
                    flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up
                ], 1))
        return flow


[docs]@BACKBONES.register_module() class TOFlow(nn.Module): """PyTorch implementation of TOFlow. In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames. Paper: Xue et al., Video Enhancement with Task-Oriented Flow, IJCV 2018 Code reference: 1. https://github.com/anchen1011/toflow 2. https://github.com/Coldog2333/pytoflow Args: adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation. Set to false if you want to train from scratch. Default: False """ def __init__(self, adapt_official_weights=False): super().__init__() self.adapt_official_weights = adapt_official_weights self.ref_idx = 0 if adapt_official_weights else 3 # The mean and std are for img with range (0, 1) self.register_buffer( 'mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer( 'std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) # flow estimation module self.spynet = SPyNet() # reconstruction module self.conv1 = nn.Conv2d(3 * 7, 64, 9, 1, 4) self.conv2 = nn.Conv2d(64, 64, 9, 1, 4) self.conv3 = nn.Conv2d(64, 64, 1) self.conv4 = nn.Conv2d(64, 3, 1) # activation function self.relu = nn.ReLU(inplace=True)
[docs] def normalize(self, img): """Normalize the input image. Args: img (Tensor): Input image. Returns: Tensor: Normalized image. """ return (img - self.mean) / self.std
[docs] def denormalize(self, img): """Denormalize the output image. Args: img (Tensor): Output image. Returns: Tensor: Denormalized image. """ return img * self.std + self.mean
[docs] def forward(self, lrs): """ Args: lrs: Input lr frames: (b, 7, 3, h, w). Returns: Tensor: SR frame: (b, 3, h, w). """ # In the official implementation, the 0-th frame is the reference frame if self.adapt_official_weights: lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :] num_batches, num_lrs, _, h, w = lrs.size() lrs = self.normalize(lrs.view(-1, 3, h, w)) lrs = lrs.view(num_batches, num_lrs, 3, h, w) lr_ref = lrs[:, self.ref_idx, :, :, :] lr_aligned = [] for i in range(7): # 7 frames if i == self.ref_idx: lr_aligned.append(lr_ref) else: lr_supp = lrs[:, i, :, :, :] flow = self.spynet(lr_ref, lr_supp) lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1))) # reconstruction hr = torch.stack(lr_aligned, dim=1) hr = hr.view(num_batches, -1, h, w) hr = self.relu(self.conv1(hr)) hr = self.relu(self.conv2(hr)) hr = self.relu(self.conv3(hr)) hr = self.conv4(hr) + lr_ref return self.denormalize(hr)
[docs] def init_weights(self, pretrained=None, strict=True): """Init weights for models. Args: pretrained (str, optional): Path for pretrained weights. If given None, pretrained weights will not be loaded. Defaults to None. strict (boo, optional): Whether strictly load the pretrained model. Defaults to True. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=strict, logger=logger) elif pretrained is None: pass # use default initialization else: raise TypeError('"pretrained" must be a str or None. ' f'But received {type(pretrained)}.')
Read the Docs v: v0.13.0
Versions
latest
stable
v0.13.0
v0.12.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.