Shortcuts

Source code for mmedit.models.common.sr_backbone_utils

# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import constant_init, kaiming_init
from mmcv.utils.parrots_wrapper import _BatchNorm


[docs]def default_init_weights(module, scale=1): """Initialize network weights. Args: modules (nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. """ for m in module.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m, a=0, mode='fan_in', bias=0) m.weight.data *= scale elif isinstance(m, nn.Linear): kaiming_init(m, a=0, mode='fan_in', bias=0) m.weight.data *= scale elif isinstance(m, _BatchNorm): constant_init(m.weight, val=1, bias=0)
[docs]def make_layer(block, num_blocks, **kwarg): """Make layers by stacking the same blocks. Args: block (nn.module): nn.module class for basic block. num_blocks (int): number of blocks. Returns: nn.Sequential: Stacked blocks in nn.Sequential. """ layers = [] for _ in range(num_blocks): layers.append(block(**kwarg)) return nn.Sequential(*layers)
[docs]class ResidualBlockNoBN(nn.Module): """Residual block without BN. It has a style of: :: ---Conv-ReLU-Conv-+- |________________| Args: mid_channels (int): Channel number of intermediate features. Default: 64. res_scale (float): Used to scale the residual before addition. Default: 1.0. """ def __init__(self, mid_channels=64, res_scale=1.0): super().__init__() self.res_scale = res_scale self.conv1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1, bias=True) self.relu = nn.ReLU(inplace=True) # if res_scale < 1.0, use the default initialization, as in EDSR. # if res_scale = 1.0, use scaled kaiming_init, as in MSRResNet. if res_scale == 1.0: self.init_weights()
[docs] def init_weights(self): """Initialize weights for ResidualBlockNoBN. Initialization methods like `kaiming_init` are for VGG-style modules. For modules with residual paths, using smaller std is better for stability and performance. We empirically use 0.1. See more details in "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks" """ for m in [self.conv1, self.conv2]: default_init_weights(m, 0.1)
[docs] def forward(self, x): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ identity = x out = self.conv2(self.relu(self.conv1(x))) return identity + out * self.res_scale
Read the Docs v: v0.13.0
Versions
latest
stable
v0.13.0
v0.12.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.