Shortcuts

Source code for mmedit.models.backbones.encoder_decoders.decoders.gl_decoder

# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule

from mmedit.models.registry import COMPONENTS


[docs]@COMPONENTS.register_module() class GLDecoder(nn.Module): """Decoder used in Global&Local model. This implementation follows: Globally and locally Consistent Image Completion Args: in_channels (int): Channel number of input feature. norm_cfg (dict): Config dict to build norm layer. act_cfg (dict): Config dict for activation layer, "relu" by default. out_act (str): Output activation type, "clip" by default. Noted that in our implementation, we clip the output with range [-1, 1]. """ def __init__(self, in_channels=256, norm_cfg=None, act_cfg=dict(type='ReLU'), out_act='clip'): super().__init__() self.dec1 = ConvModule( in_channels, 256, kernel_size=3, stride=1, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec2 = ConvModule( 256, 256, kernel_size=3, stride=1, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec3 = ConvModule( 256, 128, kernel_size=4, stride=2, padding=1, conv_cfg=dict(type='Deconv'), norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec4 = ConvModule( 128, 128, kernel_size=3, stride=1, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec5 = ConvModule( 128, 64, kernel_size=4, stride=2, padding=1, conv_cfg=dict(type='Deconv'), norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec6 = ConvModule( 64, 32, kernel_size=3, stride=1, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg) self.dec7 = ConvModule( 32, 3, kernel_size=3, stride=1, padding=1, norm_cfg=None, act_cfg=None) if out_act == 'sigmoid': self.output_act = nn.Sigmoid() elif out_act == 'clip': self.output_act = partial(torch.clamp, min=-1, max=1.) else: raise ValueError( f'{out_act} activation for output has not be supported.')
[docs] def forward(self, x): """Forward Function. Args: x (torch.Tensor): Input tensor with shape of (n, c, h, w). Returns: torch.Tensor: Output tensor with shape of (n, c, h', w'). """ for i in range(7): x = getattr(self, f'dec{i + 1}')(x) x = self.output_act(x) return x
Read the Docs v: v0.15.0
Versions
latest
stable
v0.15.0
v0.14.0
v0.13.0
v0.12.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.