Shortcuts

注意

您正在阅读 MMEditing 0.x。 MMEditing 0.x 会在 2022 年末开始逐步停止维护,建议您及时升级到 MMEditing 1.0 版本,享受由 OpenMMLab 2.0 带来的更多新特性和更佳的性能表现。阅读 MMEditing 1.0 的发版日志代码文档 以了解更多。

补全模型

AOT-GAN (TVCG’2021)

摘要

结果与模型

Places365-Challenge

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
AOT-GAN free-form (50-60%) 512x512 500k Places365-val 7.07 19.01 0.682 模型 | 日志
评估指标 掩膜缺损 论文结果 复现结果
L1 (10^-2) 1 – 10% 0.55 0.54
(lower better) 10 – 20% 1.19 1.47
20 – 30% 2.11 2.79
30 – 40% 3.20 4.38
40 – 50% 4.51 6.28
50 – 60% 7.07 10.16
PSNR 1 – 10% 34.79 inf
(higher better) 10 – 20% 29.49 31.22
20 – 30% 26.03 27.65
30 – 40% 23.58 25.06
40 – 50% 21.65 23.01
50 – 60% 19.01 20.05
SSIM 1 – 10% 0.976 0.982
(higher better) 10 – 20% 0.940 0.951
20 – 30% 0.890 0.911
30 – 40% 0.835 0.866
40 – 50% 0.773 0.815
50 – 60% 0.682 0.739

引用

@inproceedings{yan2021agg,
  author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining},
  title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting},
  booktitle = {Arxiv},
  pages={-},
  year = {2020}
}



DeepFillv1 (CVPR’2018)

DeepFillv1 (CVPR'2018)
@inproceedings{yu2018generative,
  title={Generative image inpainting with contextual attention},
  author={Yu, Jiahui and Lin, Zhe and Yang, Jimei and Shen, Xiaohui and Lu, Xin and Huang, Thomas S},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5505--5514},
  year={2018}
}

Places365-Challenge

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
DeepFillv1 square bbox 256x256 3500k Places365-val 11.019 23.429 0.862 模型 | 日志

CelebA-HQ

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
DeepFillv1 square bbox 256x256 1500k CelebA-val 6.677 26.878 0.911 模型 | 日志



DeepFillv2 (CVPR’2019)

DeepFillv2 (CVPR'2019)
@inproceedings{yu2019free,
  title={Free-form image inpainting with gated convolution},
  author={Yu, Jiahui and Lin, Zhe and Yang, Jimei and Shen, Xiaohui and Lu, Xin and Huang, Thomas S},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4471--4480},
  year={2019}
}

Places365-Challenge

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
DeepFillv2 free-form 256x256 100k Places365-val 8.635 22.398 0.815 模型 | 日志

CelebA-HQ

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
DeepFillv2 free-form 256x256 20k CelebA-val 5.411 25.721 0.871 模型 | 日志



Global&Local (ToG’2017)

Global&Local (ToG'2017)
@article{iizuka2017globally,
  title={Globally and locally consistent image completion},
  author={Iizuka, Satoshi and Simo-Serra, Edgar and Ishikawa, Hiroshi},
  journal={ACM Transactions on Graphics (ToG)},
  volume={36},
  number={4},
  pages={1--14},
  year={2017},
  publisher={ACM New York, NY, USA}
}

请注意,为了与当前的深度图像修复方法进行公平比较,我们没有在 Global&Local 中使用后处理模块。

Places365-Challenge

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
Global&Local square bbox 256x256 500k Places365-val 11.164 23.152 0.862 模型 | 日志

CelebA-HQ

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
Global&Local square bbox 256x256 500k CelebA-val 6.678 26.780 0.904 模型 | 日志



PConv (ECCV’2018)

PConv (ECCV'2018)
@inproceedings{liu2018image,
  title={Image inpainting for irregular holes using partial convolutions},
  author={Liu, Guilin and Reda, Fitsum A and Shih, Kevin J and Wang, Ting-Chun and Tao, Andrew and Catanzaro, Bryan},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={85--100},
  year={2018}
}

Places365-Challenge

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
PConv free-form 256x256 500k Places365-val 8.776 22.762 0.801 模型 | 日志

CelebA-HQ

算法 掩膜类型 分辨率 训练集容量 测试集 l1 损失 PSNR SSIM 下载
PConv free-form 256x256 500k CelebA-val 5.990 25.404 0.853 模型 | 日志



Read the Docs v: latest
Versions
latest
stable
1.x
v0.16.0
v0.15.2
v0.15.1
v0.15.0
v0.14.0
v0.13.0
v0.12.0
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.